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Kevlar: Transitioning Helix from Research to Practice 

1.0 SUMMARY 

Security weaknesses in DoD information systems remain a major challenge for system 

stakeholders. We have advanced the transition of technology developed under the Helix and 

PEASOUP projects to protect Air Force systems of interests. The result are expected to be an 

asset that, if widely deployed by the DoD, would enable a high level of confidence in the 

security of DoD systems, in particular, confidence that certain classes of critical vulnerabilities 

were no longer subject to possible exploitation. 

Weaknesses in software code (such as memory overwriting errors, fixed-width integer 

computation errors, input validation oversights, and format string vulnerabilities) remain 

common. Via these weaknesses, attackers are able to hijack an application’s intended control 

flow to violate security policies (exfiltrating secret data, allowing remote access, bypassing 

authentication, or eliminating services). To mitigate and defend against attacks that seek to 

exploit such weaknesses, we have developed the Helix architecture. Helix represents the 

culmination of over 10 years of R&D with support from Defense Advanced Research Projects 

Agency (DARPA), the National Science Foundation (NSF), the Army and the Air Force, and 

ongoing support from the Intelligence Advanced Research Projects Agency (IARPA). 

We have leveraged the opportunity to take the Helix architecture one step closer to 

deployment in real systems by developing Kevlar, a completely automatic system for securing 

applications against attack by well-funded, determined malicious adversaries. Kevlar armors 

binary programs and protects them from attacks, which could arise from the inevitable 

vulnerabilities that remain after deployment. The source code is not required nor are any other 

development artifacts. These features make Kevlar of particular value for software systems that 

have to be used but for which no development information is available.  

The key security technologies used by Kevlar are protective transformations and targeted 

recovery. The protective transformations are applied to application binaries before they are 

deployed. Conceptually, these transformations are tailor-made, lightweight “armor” that prevent 

an attacker from exploiting residual vulnerabilities in a wide variety of classes. Kevlar uses novel, 

fine-grained, high-entropy diversification transformations to prevent an attacker from 

successfully exploiting vulnerabilities. To prevent attacks from causing the system to act in 

undesirable ways, such as crashing or performing unintended actions, Kevlar also provides 

custom-made, application-specific remediation strategies that may be invoked in the event of an 

attack. 

Kevlar is implemented using dynamic binary transformation. Diversification is applied to 

the subject binary program prior to deployment. When in use, dynamic binary translation ensures 

that the functionality of the software as seen by the user is identical to the original program. The 

mechanism of dynamic binary translation is heavily protected against direct attacks. Kevlar has 

several major strengths: (a) it is applied to binaries and does not depend on particular languages, 

compilers, or libraries, (b) it is complementary to other security techniques including inspection, 

static analysis and testing, (c) it requires no changes to the software development process, and 
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(d) preliminary performance measurements show that the armoring provided by Kevlar is 

lightweight incurring modest run-time performance overhead of around 10%. 

Salient features of Kevlar include applying high-entropy randomization techniques, automated 

program repairs, leveraging highly-optimized virtual machine technology, and in general, 

developing a novel framework for program analysis, transformation and composition.  

2.0 INTRODUCTION 

Security weaknesses in DoD information systems remain a major challenge for system 

stakeholders. To mitigate and defend against attacks that seek to exploit such weaknesses, we 

have developed the Helix architecture. Helix represents the culmination of over 10 years of 

Research and Development (with support from DARPA, the National Science Foundation, the 

Army and the Air Force, and ongoing support via IARPA’s Stonesoup Program). Salient features 

of Helix include developing high-entropy randomization techniques, automated program repairs, 

leveraging highly-optimized virtual machine technology, and in general, developing a novel 

framework for program analysis, transformation and composition. We propose to transition 

technology developed under the Helix and PEASOUP projects to protect Air Force systems of 

interests. We expect the result to be an asset that, if widely deployed by the DoD, would enable a 

high level of confidence in the security of DoD systems, in particular, confidence that certain 

classes of critical vulnerabilities were no longer subject to possible exploitation. 

The next two sections describe the Helix architecture and our plans to transition this 

technology so that it can be used to protect current and future Air Force systems. The major 

component of this effort is to develop Kevlar, a robust easy to use tool for applying the Helix 

technology to real systems. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Helix 

A fundamental problem with current defenses is that they do not redress the asymmetry between 

attackers and defenders, changing the target system only slowly and reactively in response to 

attacks. Even approaches that incorporate intrusion detection and tolerance have proven 

ineffective against determined and well-funded attackers who have at their disposal a growing 

arsenal of evasive, stealthy, adaptive, polymorphic and metamorphic attacks. To cope with such 

sophisticated attacks, the Helix architecture uses a combination of defense mechanisms that is 

both highly effective and metamorphic, i.e., a high-entropy metamorphic shield, that presents 

attackers with a continuously changing attack surface.  

Figure 1 provides a high-level conceptual overview of the Helix architecture. An application 

running in Helix is treated in a holistic way, with information being shared across development, 

deployment, execution, and response phases in ways that are not possible with traditional 

architectures. 
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• The concept of analyzing and storing meta information regarding software in the 

Application Information Repository is key to enabling various security transformations.  

• Helix incorporates several novel high-entropy randomization techniques.  

• Helix significantly advanced the use of fast dynamic binary rewriting techniques for 

armoring binaries without requiring the availability of source code.  

• Helix leverages the Strata virtual machine technology for transparently augmenting 

binaries with self-sensing, self-diversification, self-protection and self-repair capabilities.  

Overall, Helix provides the intellectual framework for quickly developing and fielding new 

security transformations. The next section describes how Kevlar's protections exploit Helix-

developed capabilities in order to begin an effective transition from research to practice. 

3.2 Kevlar Architecture 

Kevlar is a completely automatic system for securing applications against attack by well-funded, 

determined malicious adversaries. It armors binary programs and protects them from attacks 

which could arise from the inevitable vulnerabilities that remain after deployment. The source 

code is not required nor are any other development artifacts (such as object files, debugging 

information, linker maps, etc.) Enabling the rapid development of security transformations and 

enabling their safe composition are hallmarks of the Kevlar. Kevlar consists of two phases: (1) 

an offline phase in which Kevlar provides deep analyses on binaries and records results in an 

intermediate representation database (called the IRDB). Kevlar then uses the database to 

generate and vet sprockets, i.e. specifications for security transformations; and (2), an online 

phase in which these sprocket specifications are dynamically applied using Strata, a state-of-the-

art dynamic binary rewriter [19, 24]. 

Figure 2 shows the high-level architecture of the off-line or redeployment portion of Kevlar. 

Kevlar consists of a static analyzer, called STARS [7], that disassembles x86 binaries, performs 

extensive static analysis of the binary, and then stores the results of the analysis along with the 

binary persistent in the IRDB. The IRDB is the repository for all information known or 

determined about a binary and is the realization of the Application Information Repository 

described in Section 3.1. 

A Kevlar analysis and transformation phase uses information in the IRDB to create new 

versions of a binary, called variants, where various armoring transformations and remediation 

policies have been applied. A novel aspect of Kevlar is that, rather than statically rewrite the 

binary, Kevlar produces programs, called Sprockets, that are used by the software dynamic 

translation system to transform the original binary into the corresponding variant at run time.  

To ensure that the variants produced by Kevlar run appropriately, they are then “vetted” by a 

tool called BED (Behavior Equivalence Detection) and TSET (Test Suite Evaluation 

Technology). BED runs each variant using a regression test suite to ensure that the variant 

produces the same output as the original binary while TSET seeks to measure our confidence 

levels in the results reported by BED. In addition, BED uses a fault injector to inject faults into 

the application to determine the effectiveness of the remediation policies generated by Kevlar. 
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The IRDB is similar to the IR for a traditional compiler and the realization of Helix’s AIR. It 

contains information about the program, such as the instructions that make up the program, their 

addresses, their control and data flow, etc. Furthermore, it contains information about each 

function including the stack layout, entry points, exit points, etc., the global data layout of the 

program, targets of indirect branches, etc. Program information is added to the IRDB by various 

tools including a binary static analyzer called STARS that is discussed in the next section 

(Section ). 

Unlike a traditional IR for a compiler, the IR in the database is not guaranteed to be 100% 

accurate. We realistically assume that information such as perfectly accurate disassembly of the 

program is not available. We make this assumption to facilitate binary analysis and 

transformation where such information is rarely available. Issues of imperfect analysis can be 

compounded if different analyses disagree on information. For example, we use both STARS 

and the Linux utility objdump to populate the list of instructions in the IRDB. The two tools 

typically agree on instruction start addresses, but occasionally they disagree. The IRDB 

facilitates the use of conflicting information by supporting conflicting information with a 

confidence metric.  

Another key feature of the IRDB is the ability to “clone” a program. A cloned program is 

identical to the program it was cloned from, except with a new name, and extra information to 

track the creation of clones. The primary purpose of a clone is to facilitate programmatic 

experimentation. For example, suppose that we wish to determine which remediation technique 

would be effective for a given program. We might choose to clone the program, then instrument 

the program with the remediation technique for testing.  

The clone feature has one other primary purpose: namely we need a “before” and “after” 

version of the program to support automatic generation of the Sprockets needed to execute the 

modified program. By tracing a cloned program’s hierarchy back to the untransformed program, 

we can successfully generate Sprockets to represent the changes between the original program 

and the transformed program. By examining these differences, automatic generation of the 

Sprockets is fast, efficient and reliable. 

Kevlar’s IRDB is implemented using PostgreSQL. Measurements show that it is fast and 

efficient. 

3.2.2 Static Analysis for Reliability and Security (STARS) 

A key component of Kevlar is STARS (STatic Analyzer for Reliability and Security).  It was 

developed to determine certain security properties of a program in binary form [7]. STARS is 

implemented as a plug-in to the popular IDA Pro disassembler [6]. The static analyzer currently 

operates on Linux/x86 binaries, although it can be targeted to any platform that is targeted by 

IDA Pro. Currently, IDA Pro targets more than 40 processors and operating platforms. 

A key function of STARS in Kevlar is the identification of the instructions of the application. 

As discussed by Debray and Andrews, precisely disassembling a binary is, in general, not a 

solvable problem [18]. In practice, STARS rarely misidentifies data as code. As noted by Debray 

and Andrews, such misidentifications would be disastrous for a static code rewriter. Because 
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Kevlar uses software dynamic translation to transform code, Kevlar is able to tolerate any 

inaccuracies—we will never rewrite data as code as the rewrite process occurs during the 

fetch/execute/translate phase of the dynamic translator. That is, only code that should be 

executed is processed. 

The static analyzer analyzes the control flow and data flow of the entire program binary. The 

analyzer builds a fully pruned SSA (Static Single Assignment) form representation of the 

program and performs numerous data flow analyses on this representation [3, 23]. The data flow 

analyses include a simplified type system, in which registers and stack locations are typed as 

being data pointers, integers, floating-point values, strings, or code pointers. 

All information determined by STARS is recorded in the IRDB. Later analysis and 

transformation phases of Kevlar use this information. During these phases, as additional or more 

accurate information becomes known, information in the IRDB is updated. 

3.2.3 Sprocket Execution Engine 

In Kevlar, transformations to the binary are applied dynamically. This approach has several 

advantages. As mentioned previously, it permits Kevlar to deal with the inaccuracies inherent in 

the static analysis of binaries. It also permits a single binary to be deployed with transformations 

applied dynamically to create an ever-changing attack surface—the metamorphic shield. The 

dynamic rewrites to be applied are specified by sprocket programs rewritten using the Sprocket 

Program Rewriting Interface (SPRI). 

Figure 4: Sprocket rewrite rule to change stack frame allocation. For exposition purposes, 

all instructions are one-byte long. 

SPRI and Sprocket Generation SPRI defines simple rewriting rules that come in two 

forms. The first form, the redirect form, transfers control to a specified target address (lines 1 and 

3 in Figure 4). The second form, the instruction definition form, indicates that there is an 

instruction at a particular location (line 2). The net effect of applying the SPRI rules shown in 

Figure 4 is to rewrite the instruction sub esp,20 instruction at address 0x8000 to be 

sub esp,40. The stack layout transformation (described later) uses such rules to transform 

stack frame allocations. 

Together these two types of rules provide the foundation for building a wide range of 

Sprocket programs. The example shown illustrates the equivalent of a small patch that modifies 

Original Program Fragment: 

(a) 0x8000 sub esp,20 

Rewrite rule: 

(1) 0x8000 -> 0xFF00 

(2) 0xFFF0 ** sub esp,40 

(3) 0xFF01 -> 0x8001 
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only 1 instruction. At the other end of the scale, transformations such as ILX (instruction 

location transformation, described later) seek to rewrite all instructions in a binary.  

Despite its conceptual simplicity, manually writing Sprockets in SPRI would be a tedious 

and error-prone process. Instead, Sprocket developers apply their transformations using a high-

level C/C++ API to manage the creation and deletion of program variants, and to manipulate 

program state, e.g. to insert, delete, or replace instructions and re-route control flow. The API 

transparently interacts with the IRDB to commit any changes. 

With this architecture, the composition of Sprockets is naturally performed by chaining 

together transformations: one Sprocket encodes its transformation in the IRDB, the next 

Sprocket then takes as input the new database state, and then effect its own transformations. 

Kevlar then automatically generates SPRI rules for any program variants by essentially 

performing a “smart diff” between the IRDB representation of a variant against the IRDB 

representation of the original binary. 

Strata. Once the SPRI rules are generated, Kevlar uses software dynamic translation (SDT) 

techniques to efficiently execute Sprockets (Figure 4). While we use Strata as our underlying 

SDT infrastructure, we note that sprockets could be similarly implemented via any SDT tool [2, 

12, 14, 19, 20, 22]. 

Strata dynamically loads an application and mediates application execution by examining 

and translating an application’s instructions before they execute on the host CPU. Strata operates 

as a co-routine with the application that it is protecting. Translated application instructions are 

held in a managed cache called a fragment cache. Strata is first entered by capturing and saving 

the application context (e.g., program counter (PC), condition codes, registers, etc.) Following 

context capture, Strata processes the next application instruction. If a translation for this 

instruction has been previously cached, Strata transfers control to the cached translated 

instructions. 

If there is no cached translation for the next application instruction, Strata allocates storage 

in the fragment cache for a new fragment of translated instructions. Strata then populates the 

fragment by fetching, decoding, and translating application instructions one-by-one until an end-

of-fragment condition is met (e.g., an indirect branch). As the application executes under Strata’s 

control, more and more of the applicationâ€™s working set of instructions materialize in the 

fragment cache. 

Implementation of Sprockets requires several simple extensions to a typical software 

dynamic translator. First, we must modify Strata startup code to read the SPRI rewrite rules (not 

pictured). Next, Strata’s instruction fetching mechanism is overridden to first check, then read 

from SPRI rewrite rules as appropriate. Lastly, the next-PC operation is modified to obey any 

redirection rules that are specified. 

Finally, we must take steps to protect Strata itself. To thwart a compromised application 

from overwriting Strata’s own code or data, we use standard hardware memory protection 

mechanisms. When executing the untrusted application code, Strata turns off read, write, and 

execute permission on the pages of memory it uses, leaving only execute (but not write) 
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permission on the code cache. Strata also watches for attempts by the application to change these 

permissions. Previous work has shown this technique to be effective and cost very little [10]. 

3.3 Kevlar Protections 

The Kevlar toolchain is flexible and powerful. It can dynamically apply a wide range of diversity 

transformations on a running binary, it can check and enforce various program properties that 

have been extracted from the binary or specified by an administrator, and it can insert 

remediation code. The following sections describe some of the Kevlar.  

3.3.1 Instruction Location Transformation (ILX) 

A powerful diversity technique is to randomize the location of code so an attacker has difficulty 

precisely locating targets of attack (e.g., entry point to functions, tables of pointers to functions, 

etc.). For example, most systems now routinely use Address Space Layout Randomization 

(ASLR) to make exploiting weaknesses difficult [25]. ASLR has several positive attributes. It is 

cheap to apply incurring little or no run-time overhead, and it can It can be applied to any binary, 

It is applied automatically—no user intervention or action is necessary. 

Unfortunately, ASLR implementations have low entropy. ASLR on a 32-bit architecture 

only provides 16 bits of entropy. Furthermore, ASLR is not applied universally throughout the 

address space. Even when using dynamically-linked libraries, it is common for the main program 

text to start at a known fixed location. Because of these limitations, ASLR-protected code is 

subject to attack [4, 7, 21]. 

Instruction Location Transformation (ILX) is a technique that seeks to scatter instructions in 

a program randomly throughout the address space. In contrast to ASLR, ILX provides 31 bits of 

entropy on a 32-bit machine. Furthermore, ILX is applied universally to all segments. Thus, the 

major limitations of ASLR are eliminated. 

 Figure 5 conceptually illustrates ILX. The top left of the figure shows the control-flow 

graph of a particular program segment. The compiler and the linker collaborate to produce an 

executable file where instructions are laid out so they can be loaded into memory when the 

program is executed. A typical layout of code is shown at the bottom left of the figure. The right 

side of the figure shows the layout of the code when ILX is applied. 

To link instructions together, an ILX sprocket contains a fallthrough map shown at the top 

right of Figure 5. This map uses SPRI to specify the execution successor of each instruction in 

the program.  

Together, we call the fallthrough map and randomized instruction locations an ILX sprocket. 

Figure 6 shows how an ILX program could be created. First, STARS detects the instructions and 

functions in a program. Next, the program is analyzed for indirect branch targets, call sites, 

branches, etc. Finally, the reassembly engine uses this information to relocate the entire program 

with each instruction in a randomized location, and creates the fallthrough map.  
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preliminary prototype achieved only 13% runtime overhead on the SPEC2006 benchmark suite. 

Furthermore, randomly scattering instructions throughout the address space significantly reduces 

the attack surface for mounting any arc-injection attacks, including attacks based on return-

oriented programming techniques. Hiser et al. provides a more complete discussion of the 

benefits of ILX and full details of its implementation [8]. 

3.3.2 Stack Layout Transformation (SLX) 

A common target of malicious attacks are locations on the stack (e.g., return addresses, frame 

pointers, function pointers, and critical data). SLX is a transformation that is applied to a running 

application to dynamically randomize the location of variables on the stack and place canaries to 

determine if an attack has been attempted. 

Transformation of the stack frame layout for a function requires determination of:  

1. The current layout of the stack frame, e.g. the addresses and sizes of various stack data 

objects (incoming arguments, saved registers, return address, local variables, outgoing 

arguments)  

2. The instructions that generate an address of a data objects on the run-time stack.  

In principle, if this information were available, the layout of the stack frame could be 

changed and the instructions that generate stack addresses modified to reflect the new layout. 

The new layout of the stack frame could be based on any security-relevant criteria, e.g., memory 

objects could be placed in random order, padding introduced before, after or within the stack, 

canaries included, variables promoted to the heap, etc. While this information is readily available 

to the compiler when given a program in source code form, Kevlar must recover this information 

solely based on the binary representation. 

In our approach, static analysis (STARS) is used to determine all the necessary details of the 

binary program. However, when starting with a binary program, precise determination of the 

stack layout and the instructions that generate stack addresses for any given function is 

problematic (indeed, even the very basic notion of a function is problematic at the binary level). 

Modern compilers employ a wide range of techniques to minimize both the use of storage and 

program execution time. The result is binary programs with unpredictable structures. 

Our approach to determination of the stack layout and the instructions that reference the 

stack is based on two assumptions about addressing: (a) the predominant mechanism by which 

instructions access stack variables is through scaled or direct addressing based on an offset 

indicating the variable starting location, and (b) where indirect addressing is used, that use is for 

access to variables whose locations can be inferred from previous direct or scaled addressing. 

Starting with these assumptions, layout inferences are produced using a set of simple heuristics 

that rely upon additional assumptions concerning: (c) the manner in which the stack is allocated 

and deallocated, and (d) the general stack frame layout. 

The assumptions listed above do not necessarily hold (although assumptions (c) and (d) hold 

for binaries produced by C/C++ compilers that use the cdecl x86 calling convention). Indeed 

through BED and TSET, the Kevlar toolchain explicitly compensates for any transformations 
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that might rely on erroneous information. Our approach to stack layout transformation is 

speculative. Initial inferences about the stack are created, and these inferences are then evaluated 

and refined if necessary to ensure that they preserve the program’s semantics. 

In our current approach, we limit transformations to placement of memory objects in 

random order and the introduction of random length padding. Vetting of these transformations is 

by testing with BED and TSET. Furthermore, we use diversity as an error amplification 

technique to detect bad stack layout inferences. The basic idea behind error amplification is as 

follows: if a hypothesized stack layout inference is correct, then any semantic-preserving 

transformations should result in a correct program variant. We can therefore develop a multitude 

of such transformations, e.g., permutation of the order of variables, and vet each of the variants. 

If any of them fail, and assuming that our transformation is correctly implemented, we can then 

not only reject the variant but also the inferred stack layout. Note that this process is the exact 

opposite of validating transformations by using testing to validate optimizing compiler 

transformations. 

For each detected function in a binary, SLX randomizes the stack layout using an aggressive 

inference to reorder variables, e.g. using offsets in the disassembly of the program to infer 

variables. If the tests are passed, we use error amplification before creating the final variant. The 

layout is randomized a second time and the resulting program tested again. If the tests are passed 

following the second randomization, a third randomization is effected that reorders the stack 

elements and places padding between stack objects. If the tests are passed with this 

randomization, then the transformation is assumed to be satisfactory, and the analysis continues 

with the next function. 

If one or more tests fail during analysis of a function, the inference about the stack layout is 

abandoned, and a simpler, less aggressive inference is used. The least aggressive inference 

besides not changing the function at all is one in which the entire stack frame is relocated but the 

order of variables is left unchanged. Preliminary work suggests that reordering variables is an 

effective error amplification technique as reordering misidentified variables will most likely 

result in a program crash. Thus, three rounds of error amplification appears sufficient to vet SLX 

transformations. 

Our current approach has been evaluated on a variety of benchmarks, and the results are 

promising [16]. The use of BED and TSET resulted in binaries whose functions were 

transformed with different levels of aggressiveness, ranging from no transforms, to transforms 

that reordered a subset of the local variables, and in some cases, we were able to infer and 

reorder all local variables on the stack frame. The ability to reorder stack variables for security 

purposes is standard in some compilers, e.g., the ProPolice extension to gcc reorders buffers 

higher in memory than other variables to prevent local overflows [5]. Our results demonstrate 

that we can enable similar transformations but using only binaries. 

3.3.3 Heap Randomization and Transformation (HLX) 

Kevlar’s Heap Layout Transformation (HLX) provides protection against a variety of common 

memory errors, such as buffer-overflows, use-after-free, and double-free errors. It achieves these 

protections by detecting (using STARS analysis) memory allocations within the program and 
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rewriting the allocations to randomly increase the allocation size. HLX also detects memory 

deallocation sites and maintains a pool of objects that were marked as free. When additional 

memory is needed (such as the free object pool has become too large), the free pool is checked 

and objects are randomly selected for deallocation. 

Table 1: Example without and with HLX, respectively 

int size = strlen(input);  

char* newValue = 

malloc(size+1); 

strcpy(newValue,input); \par 

sprintf(newValue, "%s!\n", 

input);  

log("The input is %s", 

newValue);  

free(newValue); 

 

int size = strlen(input); 

cleanup_free_pool(); 

char* newValue = 

malloc(random_increase(size+1

));  

strcpy(newValue,input);  

sprintf(newValue, "%s!\n", 

input);  

log("The input is %s", 

newValue);  

add_to_free_pool(newValue);  

 

Table 1 provides an example. The left portion shows unprotected source code that allocates 

a buffer, and uses that buffer to manipulate input. Unfortunately, the code has a off-by-one error, 

and allocates too few bytes to hold the newly formed string, perhaps because additional 

characters were were added to the manipulation, but the size of the buffer was not updated. The 

right side of the figure shows how HLX would transform the program. The amount of memory 

allocated gets increased by a random amount, and free pool management code is inserted. In this 

case, the off-by-one error is converted from a possibly crash-inducing bug, into a fully-correct 

program. While not all programs can be completely repaired, the transform still prevents exploits 

because an attacker cannot reliably predict where heap items may be located, or what size a 

buffer might be to predictably overrun the buffer. 

Unlike the example, however, HLX provides high-entropy randomization on a binary 

program where no source code is available, like the rest of Kevlar. 

3.3.4 Instruction Set Randomization 

A common and very dangerous form of security attack involves exploiting a vulnerability to 

inject malicious code into an executing application and then cause the injected code to be 

executed. A theoretically-strong approach to defending against any type of code-injection attack 

(irrespective of the vulnerability) is to create and use a process-specific instruction set that is 

created by a randomization algorithm. Code injected by an attacker who does not know the 

randomization key will be invalid for the randomized processor effectively thwarting the attack.  

Kevlar takes advantage of ISR to help defeat these kinds of attacks. ISR uses Kevlar’s static 

analysis and runtime support to identify code locations, and encrypt them during a process’ 

loadeding procedure. Kevlar versions of ISR is based on the first practical version of ISR [9]. 
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Kevlar further extents this technology to monitor the application for dynamically loaded code 

(shared objects or .dll’s) and encrypts that code as it enters the runtime system. 

Kevlar’s code-injection security can be further enhanced by configuring it as a metamorphic 

shield [13]. The metamorphic shield (MMS) technology not only randomizes the code at 

program startup, but periodically rerandomizes the code’s encryption characteristics as the 

program is running. Such randomization prevents attackers from exhaustively searching for the 

encryption key, keeping the program safe from code injection from even the most determined 

attackers. 

3.3.5 PC Confinement (PCC) 

ISR provides diversity which prevents malicious code from being injected into the running 

application, but an attacker may still be able to re-use code that is already in the application to 

enact security violations, called an arc-injection attack [15 Indirect branches, such as function 

calls via function pointers and function return instructions, are vulnerable to such an attack if the 

branch’s data is overwritten with a buffer overflow, format string issue, or other program 

weakness. Table 2 contains an example of a possible arc-injection attack. 

Table 2: Example of arc-injection attack 

void main(){ 

   auth = authenticate(); 

   vulnerable_code(); 

   if(auth) { 

      send_secret_data(); 

   } 

} 

In the table, if the code in vulenerable_code() can overwrite the function’s return 

address (or even just part of the function’s return address via a partial overwriting attack! [1]), 

the return instruction can possibly jump anywhere in the program. It may jump to the system() 

function to execute shell commands, or to the send_secret_data() call, to more steathily violate 

the application’s security policy. 

Kevlar's ILX feature can defeat many of these attacks by randomizing the application’s code. 

However, Strata’s translation and sprocket execution code are at static locations, which may still 

be targets of arc-injection attacks. Kevlar can protect all statically located code by employing PC 

confinement (PCC). PCC is a type of program shepherding where indirect branches are 

monitored and only allowed to transfer control to ILX-randomized code [11]. 

Kevlar’s static analysis identifies the location of valid indirect control transfers, and the run-

time environment efficiently monitors the execution of indirect branches. Indirect control flow is 

only allowed if the destination is acceptable. Consequently, PCC and ILX can disallow control 

transfers to unrandomized code, such as Strata’s sprocket execution code, thereby eliminating the 

vast majority of arc-injection attacks. 
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3.4 Technology Communication 

As part of our approach to transitioning the Helix/Kelvar technology, we participated in a variety 

of meetings, prepared various publications, and gave several presentations during this period. 

Our most significant and visible communications are: 

• We prepared two posters and handouts for the PACOM exercise in Hawaii. One poster 

described the Helix/Kevlar technology. A second poster described the demonstration. 

Handout versions of the posters were also created.  

• Anh Nguyen-Tuong made a presentation at the Global Horizons Technical Exchange 

Meeting held March 25â€“27, 2013 at Rome AFB.  

• Dr. Jack W. Davidson travelled to Baltimore to see a GCCS demonstration by Northrup-

Grumman at the AFCEA International Cyber Symposium held June 25-27, 2013.  

• We published a paper, A Framework for Creating Binary Rewriting Tools in European 

Dependable Computer Conference, 2014.  

• We published a paper, To B or not to B: Blessing OS Commands with Software DNA 

Shotgun Sequencing in European Dependable Computer Conference, 2014.  

• A student, Sudeep Ghosh, published his dissertation, Software Protection via Composable 

Process-level Virtual Machines  

• We published a paper, What’s the PointISA? in the Second ACM Workshop on 

Information Hiding and Multimedia Security.  

• We made a presentation of the Kevlar technology on September 6, 2013 at the United 

States Patent and Trademark Office in Alexandria, Virginia at the invitation of the UVa’s 

Vice-President of Research, Thomas Skalak. The presentation was made to a group of 

venture capitalists and state government officials (including the Governor of Virginia).  

• We submitted a provisional patent application called “Datameld”.  

• Presentation and demonstration of Kevlar at the 2014 International Summer School on 

Software Protection and Security held in Verona, Italy on July 27â€“August 1, 2014. See 

http://issisp2014.di.univr.it/. 

4.0 RESULTS AND DISCUSSION 

We present out results (as indicated in the following subsections) for each 3 month period during 

the project. 

4.1 Period 1 – Feb. 2013 to May 2013 

4.1.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. In conjunction with 

PACOM contractors, we developed a demonstration of Kevlar for an exercise held in Hawaii in 

early May (May 6–9, 2013). The demonstration was to protect an IRC Chat services component, 

APPROVED FOR PUBLICATION RELEASE; DISTRIBUTION UNLIMITED



 16 

Anope, that is widely used by the U.S. government. We developed an attack against a vulnerable 

Anope services module and demonstrated that the protected module was impervious to the attack. 

We also provided protected versions of other software including ProFTPD (a FTP server), 

Apache (web server), xpdf, and bzip2 (a commonly used compression utility), for a Red Team 

Evaluation. We provided demonstration attacks against xpdf, bzip2, and dumbledore (a synthetic 

application). 

We worked with ReSurgo LLC and MIT Lincoln Labs to develop at test plan for evaluating 

Kevlar. The result was a test plan document that described the proposed evaluation and the 

metrics to be used for the exercise. 

Sandia provided a report to PACOM and AFRL. 

4.1.2 Technical Accomplishments this Period 

The major technical accomplishment this period was the demonstration that Kevlar could easily 

be applied to off-the-shelf binaries by end users (pushbutton protection). 

We made improvements to our Strata Program Rewriting Interface (SPRI) to allow dynamic 

randomization through a random starting address and random selection at load time of the SPRI 

file to apply. 

4.1.3 Improvements to Prototypes This Period 

We continue to improve the performance, robustness, and coverage of Kevlar. For example, we 

fixed some bugs that were exposed during testing. We also extended Kevlar to provide 

protection to dynamically loaded libraries, to provide dynamic (i.e., moving target) capabilities 

so each time an application is executed it presents a different attack surface to the adversary. 

4.2 Period 2 – May 2013 to Aug. 2013 

4.2.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. Our major goal for this 

quarter was to take “lessons learned” from the PACOM exercise held in May and incorporate 

them in the Kevlar roadmap. We have continued to work with MIT Lincoln Laboratories to 

provide assistance as needed for their evaluation of Kevlar. 

4.2.2 Technical Accomplishments this Period 

The major technical accomplishments this period were to improve the readiness level of the 32-

bit Linux version of Kevlar and to layout the groundwork for a 64-bit Linux version. We also 

investigated technical issues involved with porting Kevlar to a 32-bit Microsoft Windows 

platform. Windows XP SP3 was the chosen target platform to evaluate and Visual Studio 2008 

was used as the IDE. During this evaluation process it was determined that work effort would be 

better spent on developing a 64-bit Windows port of Kevlar as the x86-64 Linux port would 

serve as its foundation. 
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4.2.3 Improvements to Prototypes This Period 

We continue to improve the performance, robustness, and coverage of Kevlar. For example, we 

fixed some bugs that were exposed while porting the code base to 64 bit. We have successfully 

implemented a basic stratafier tool to inject the Strata VM into binaries. We have basic 

implementation of the following Strata capabilities:  

• basic translation for x86-64  

• signal handling  

• system call watching  

• threading support  

• fork support  

• performance optimization  

4.3 Period 3 – Aug. 2013 to Nov. 2013 

4.3.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. We have successfully built 

and configured Kevlar prototypes to armor binaries. We have used regression tests extensively to 

validate that Kevlar-armored binaries retain the same operational semantics on known good input 

data. We have also produced documentation and a turnkey â€œpush-buttonâ€  solution to easily 

armor binaries. 

4.3.2 Technical Accomplishments this Period 

The major technical accomplishments this period are:  

• Testing Kevlar using extensive regression test suites. The availability of test suite servers 

not only to validate the Kevlar protection but also improves their precision.  

• Further supporting the x86-64 architecture  

• Work on porting Kevlar to 64-bit Microsoft Windows began. The targeted platform is 

Windows 7 Enterprise and the IDE chosen is Microsoft Visual Studio 2012. The general 

porting approach of iterative working models of increasing functionality was designed and 

work on the straightforward porting tasks such as improving type safety in the Kevlar 

source code was begun.  

4.3.3 Improvements to Prototypes This Period 

We have made numerous improvements to the Kevlar toolchain, in particular for x86-64. These 

include:  

• Improved stability of the Strata Virtual Machine that is the core of Kevlar  

• Improved stability of the stratafier tool  
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• Port of the Heap Randomization diversity transformation  

• Port of the PC Confinement transformation  

• Initiated port of the Instruction Location Randomization technique  

• Initiated port of the base IRDB API  

In addition we continue to fix bugs we encounter as part of the porting process to x86-64. 

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions. 

4.4 Period 4 – Nov. 2013 to Feb. 2014 

4.4.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. We have started work 

investigating the possibility of using Kevlar to protect the Global Command and Control System 

(GCCS). One major task is understanding the GCCS system so that we can properly protect it. 

Another major task has been to investigate the feasibility of using Kevlar on a Solaris operating 

system. Another major task is to port Kevlar to Windows. We have made progress as the Kevlar 

is now building (i.e., compiling and linking) on Windows. We are now starting the debugging 

progress. 

4.4.2 Technical Accomplishments this Period 

The major technical accomplishments this period are:  

• Improved Kevlar Testing on x86-64. We have been testing against the Gnome X11 

window manager’s suite of applications. While bugs still exist, most programs can now be 

"turn key" protected.  

• Further supporting the x86-64 Linux architecture within Kevlar. Our stack randomization 

protections are now working on this architecture.  

• Achieved in-depth estimates of the work required to port Kevlar to x86-32 Solaris.  

• Operating system - We have obtained a Solaris OS, and installed necessary build 

tools such as gcc, nasm, libelf, postgres, etc.  

• Strata - We have fixed many Solaris/Linux porting issues. Basic dynamic translation 

support seems to work, however advanced support (signal handling, system call 

watching, etc.) still needs significant additional work.  

• Stratafier - We have fixed many Solaris/Linux porting issues, and the Stratafication 

process seems to work on one example. Additional testing is needed.  

• IRDB interfaces - While we have fixed many porting issues, building is still a 

challenge due to compiler compatibility issues. We anticipate these can be resolved 

with moderate effort.  

• IDA Pro/STARS - One of the main analysis engines of Kevlar is incompatible with 

Solaris, and cannot reasonably be ported due to the commercial nature of IDA Pro. 
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However, we have investigated using a Linux machine to act as a analysis server for 

Solaris binaries. This seems reasonable, however architecting and implementing the 

server will require moderate to significant effort.  

• Significant work on a x86-32 Solaris port has been achieved, but the first working 

prototype is still unavailable.  

• We are now able to successfully build Strata on a 64-bit Windows platform using Visual 

Studio. We are now in the process of debugging the code.  

4.4.3 Improvements to Prototypes This Period 

We have made numerous improvements to the Kevlar toolchain, in particular for x86-64. These 

include:  

• Improved stability of the Strata Virtual Machine that is the core of Kevlar.  

• Improved stability and applicability of the Stratafier tool, which now supports Stratfication 

of executable shared objects.  

• Port of the Stack Randomization diversity transformation  

• Finished port of the Instruction Location Randomization technique, which includes 

robustness enhancements for both x86-32 and x86-64.  

• Finished port of the base IRDB API  

In addition we continue to fix bugs we encounter as part of the porting process to x86-64. 

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions. 

4.5 Period 5 – Feb. 2014 to May 2014 

4.5.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. We have continued work 

investigating the possibility of using Kevlar to protect the Global Command and Control System 

(GCCS). In this period, we made substantial progress as AFRL and Northrup Grumman visited 

our lab in April to demonstrate the operation of GCCS (in a previous visit by North Grumman, 

they were not able to demonstrate GCCS because of a configuration problem). We also made 

substantial progress in modifying Kevlar so it handled x86-64 binaries on Ubuntu (a first goal 

before moving to x86-64 on Solaris) In addition, substantial progress was made on porting 

Kevlar to the Windows 8 platform, as we were able to run simple Windows programs under 

control of the protective virtual machine, Strata.  

4.5.2 Technical Accomplishments this Period 

The major technical accomplishments this period are:  
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• Significant refinements and testing on x86-64 Ubuntu platform. All major protections are 

enabled and work on very large programs. While bugs still exist, most programs can now 

be "turn key" protected using all Kevlar protections, including ISR and ILR.  

• Started work on Kevlar porting to x86-32 Solaris for GCCS system.  

• Operating system - We have been able to install necessary tools (such as gcc, nasm, 

libelf, postgres, etc.) on a GCCS system.  

• Strata - We have fixed many Solaris/Linux porting issues. Basic dynamic translation 

support is complete, and advanced support (signal handling, system call watching, 

etc.) has received significant effort. Most Strata facilities now work correctly on 

Solaris.  

• Stratafier - We have done additional testing on the Stratafier and found several 

fundamental issues that prevent the current Stratafier mechanism from being 

effective and operational. We have redesigned and begun implementation of a 

Solaris-compatible mechanism.  

• PC-Confinement - A first working version of PC confinement on solaris has been 

achieved.  

• IRDB interfaces - While we have fixed many porting issues, building was still a 

challenge due to compiler compatibility issues. To solve this issue, we obtained and 

installed the SUNSwpro compiler. This has resolved many the compilation issues in 

the IRDB interface, but some issues continue to remain.  

• Significant work on a x86-32 Solaris port has been achieved, and we have a partially 

working prototype. Before a full release is available, archiving is necessary.  

• We are now able to successfully run simple (non-threaded) programs under control of 

Strata of x86-64 Windows 8 platforms..  

4.5.3 Improvements to Prototypes This Period 

We have made numerous improvements to the Kevlar toolchain, in particular for x86-64 Ubuntu 

and x86-32 Solaris. These include:  

• Improved stability and performance of the Strata Virtual Machine that is the core of 

Kevlar.  

• Redesign of the Stratafier component for x86-32 Solaris.  

• Port of all Kevlar protections to x86-64 Ubuntu.  

• Adapting Kevlar for x86-64 Windows 8. Simple (single thread) programs can now run 

reliably under control of Strata  

In addition we continue to fix bugs we encounter as part of the porting process to x86-64. 

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions. 
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4.6 Period 6 – May 2014 to Aug. 2014 

4.6.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. We have continued work 

investigating the possibility of using Kevlar to protect the Global Command and Control System 

(GCCS). We are now able to apply some of the Kevlar protections to Solaris executables. The 

Windows port is coming along. After getting the first version working, we refactored the code so 

that fit into the overall software architecture in a clean, easy to maintain way.  

4.6.2 Technical Accomplishments this Period 

The major technical accomplishments this period are:  

• Significant refinements and testing on x86-32 Solaris platform. Many major protections 

are enabled and work on some mid-sized programs, such as bzip2, gedit, etc. While bugs 

still exist, these programs can now be "turn key" protected using most Kevlar protections, 

including ISR and ILR.  

• We have continued work on Kevlar porting to x86-32 Solaris for GCCS system.  

• Strata - We have fixed most Solaris/Linux porting issues. Basic dynamic translation 

support and advanced support (signal handling, system call watching, etc.) is 

complete. All relevant Strata facilities now operate correctly on most Solaris 

programs.  

• Stratafier - We have finished the redesigned and made progress on an 

implementation of a Solaris-compatible mechanism. Stratafication of most programs 

is not possible on Solaris, but further testing is required.  

• ISR - A first working version of ISR, complete with metamorphic shield rekeying, 

has been achieved on Solaris.  

• IRDB interfaces - The SUNSwpro compiler has resolved many of the compilation 

issues in the IRDB interface. However, some issues remained. We have resolved 

many porting issues, and the IRDB interfaces are working for many programs. 

Further testing and debugging remain necessary.  

• Significant work on a x86-32 Solaris port has been achieved, and we have a working 

prototype that includes many Kevlar defenses.  

• We are now working to understand threading on Windows so the relevant Strata code can 

be adapted appropriately.  

• We have further protected a binary from the GCCS system, further testing on GCCS 

remains.  

4.6.3 Improvements to Prototypes This Period 

We have made numerous improvements to the Kevlar toolchain, in particular for x86-32 Solaris. 

These include:  
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• Redesign and Reimplementation of the Stratafier component for x86-32 Solaris.  

• Port of many Kevlar protections, including ISR and PC-Confinement to x86-32 Solaris.  

• First functional prototype of Kevlar for x86-32 Solaris.  

In addition we continue to fix bugs we encounter as part of the porting process to x86-64. 

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions. 

4.7 Period 7 – Aug. 2014 to Nov. 2014 

4.7.1 Progress Against Planned Objectives 

A major objective of this effort is to demonstrate the technical readiness of portions of the Helix 

technology developed under contract FA8650-10-C-7025 and others. We have continued work 

investigating the possibility of using Kevlar to protect the Global Command and Control System 

(GCCS). We are now able to apply many of the Kevlar protections to Solaris executables. We 

have protected two GCCS executables from the track management system (TMS). We the 

protected executables to AFRL for evaluation. We have also protected many other executables in 

GCCS, and tested them internally. All seem to function properly. We have also advanced the 

Windows port of the basic Kevlar.  

4.7.2 Technical Accomplishments this Period 

The major technical accomplishments this period are:  

• Significant refinements and testing on x86-32 Solaris platform. Most major protections are 

enabled and work on some mid-sized and large-sized programs, such as bzip2, gedit, 

gnome-terminal, etc. Most programs can now be "turn key" protected using most Kevlar 

protections, including ISR and ILR.  

• We have continued work on Kevlar porting to x86-32 Solaris for GCCS system, and have 

succeeded in protecting many of the TMS programs.  

• We are achieved success on handling threaded applications on the Windows OS.  

• We are now working to understand exception handling on Windows so the relevant Strata 

code can be adapted appropriately.  

4.7.3 Improvements to Prototypes This Period 

We have made numerous improvements to the Kevlar toolchain, in particular for x86-32 Solaris. 

These include:  

• Porting of several IRDB faciltiies, including fast spri and preLoadedILR to improve 

loading times.  

• Port of many Kevlar protections, including final porting of the ILR transformation.  

• First fully functional prototype of Kevlar for x86-32 Solaris.  

In addition we continue to fix bugs we encounter as part of the porting process to x86-64. 

The net result is to vastly improve the robustness of Kevlar across both the x86-32 and the x86-

64 bit versions. 
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4.8 Results Discussion 

During the many periods of this project we have done much to understand and promote the 

possible transition of Helix/Kevlar. First, various meetings, publications and presentations have 

helped us connect with possible transition partners and taught us the constraints customers may 

have for a transitionable technology. Our porting to Windows and Solaris platforms has helped 

us both gain an deeper understanding these issues and constraints, as well as made our prototype 

technology more attractive to potential partners. We have learned much, namely that different 

operating systems have different default compilers, which can provide significant challenges to a 

tool that works on the compiler’s output (a binary program). In particular, some of our Linux-

based tools assumed a particular calling convention, and different systems use different calling 

conventions. Abstracting the calling convention as much as possible eases technology transition. 

5.0 CONCLUSIONS 

Security weaknesses in DoD information systems remain a major challenge for system 

stakeholders. We have advanced the transition of technology developed under the Helix and 

PEASOUP projects to protect Air Force systems of interests. The result are expected to be an 

asset that, if widely deployed by the DoD, would enable a high level of confidence in the 

security of DoD systems, in particular, confidence that certain classes of critical vulnerabilities 

were no longer subject to possible exploitation. 

We have leveraged the opportunity to take the Helix architecture one step closer to 

deployment in real systems by developing Kevlar, a completely automatic system for securing 

applications against attack by well-funded, determined malicious adversaries. Kevlar armors 

binary programs and protects them from attacks which could arise from the inevitable 

vulnerabilities that remain after deployment. The source code is not required nor are any other 

development artifacts. These features make Kevlar of particular value for software systems that 

have to be used but for which no development information is available. 

During this project we have done much to understand and promote the possible transition of 

Helix/Kevlar. First, various meetings, publications and presentations have helped us connect 

with possible transition partners and taught us the constraints customers may have for a 

transitionable technology. Our porting to Windows and Solaris platforms has helped us both gain 

an deeper understanding these issues and constraints, as well as made our prototype technology 

more attractive to potential partners. We have learned much, namely that different operating 

systems have different default compilers, which can provide significant challenges to a tool that 

works on the compiler’s output (a binary program). In particular, some of our Linux-based tools 

assumed a particular calling convention, and different systems use different calling conventions. 

Abstracting the calling convention as much as possible eases technology transition. 
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6.1 List of Acronyms 

 ASLR  -  Address Space Layout Randomization 

 AIR  -  Application Information Repository 

 BED  -  Behavior Equivalence Detection 

 DARPA  -  Defense Advanced Research Projects Agency   

 DoD   -  Department of Defense 

 GCCS  -  Global Command and Control System 

 HLT/HLX -  Heap Layout Transformation 

 IARPA -  Intelligence Advanced Research Projects Agency 

 ILT/ILX -  Instruction Location Transformation 

 IR  -  Intermediate Representation  

 IRDB   -  Intermediate Representation Database 

 NSF  -  National Science Foundation 

 SDT  -  Software Dynamic Translator 

 SPRI  -  Sprocket Program Rewriting Interface 

 STARS -  Static Analyzer for Reliability and Security 

 SSA  -  Static Single Assignment 

 TMS  -  Track Management System 

 TRL  -  Technical Readiness Level 

 TSET  -  Test Suite Evaluation Technology  
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